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Containment of epidemic outbreaks entails great societal and economic costs. Cost-effective con-
tainment strategies rely on efficiently identifying infected individuals, making the best possible use
of the available testing resources. Therefore, quickly identifying the optimal testing strategy is of
critical importance. Here, we demonstrate that machine learning can be used to identify which
individuals are most beneficial to test, automatically and dynamically adapting the testing strat-
egy to the characteristics of the disease outbreak. Specifically, we simulate an outbreak using the
archetypal susceptible-infectious-recovered (SIR) model and we use data about the first confirmed
cases to train a neural network that learns to make predictions about the rest of the population.
Using these prediction, we manage to contain the outbreak more effectively and more quickly than
with standard approaches. Furthermore, we demonstrate how this method can be used also when
there is a possibility of reinfection (SIRS model) to efficiently eradicate an endemic disease.

Compartmental epidemiological models provide a sim-
ple and powerful mathematical framework to capture the
main features of a disease outbreak in a population [1, 2].
They consider how a disease spreads in a finite popula-
tion of individuals over a time interval. The individu-
als are compartimentalized into categories based on their
epidemiological condition. The first such model, known
as the susceptible-infectious-recovered (SIR) model, was
proposed in 1927 by Kermack and McKendrick [3] and
is still widely employed today [4]. In the SIR model,
there are three categories: susceptible individuals that
have never been infected; infectious individuals that are
currently infected; and recovered individuals that have
previously been infected and are now immunized against
the disease. Initially, all individuals are susceptible ex-
cept for a limited group of infectious individuals, who
seed the disease.

In the event of a disease outbreak, it is often desirable
to attempt to contain or eradicate it. Different factors in-
fluence how effective a containment strategy is, including
the characteristics of the disease and of the population
[5, 6]. However, these characteristics are often difficult to
measure or model precisely, especially for novel diseases
during their first outbreaks [6–13]. The World Health
Organization provides some general guidelines for strate-
gies to prevent disease spread [14], which include travel
restrictions, social distancing, and enforced quarantine.
In particular, the isolation of potentially infected individ-
uals is often the most effective measure to limit the spread
of the infection. The safest approach would be to isolate
and quarantine all individuals regardless of their epidemi-
ological condition. However, this cannot be implemented
and maintained on a large scale for a prolonged period
because of its societal and economic deleterious effects
[15].

In order to implement efficient, cost-effective strategies
to contain an outbreak, it is therefore critical to promptly
identify infectious individuals. The most straightforward
approach would be to test all the individuals and im-

mediately identify and isolate/treat the infectious ones
[16]. In a real-life large-scale epidemic, however, exten-
sive testing is not usually feasible because of economic
and logistic constraints [17–19]. Therefore, the contain-
ment of the disease requires interventions also on individ-
uals who have not been tested yet, which again entails
societal and economic costs [20].

Here, we demonstrate that machine learning can be
used to identify an optimized test strategy, i.e., which
are the individuals that is most beneficial to test. Specif-
ically, we introduce a neural-network-powered strategy
[21, 22] for testing and isolating individuals, even though
the parameters of the model are not known and infec-
tious individuals can be asymptomatic. The neural net-
work informs the decision on which individuals should be
tested and isolated. Modelling a disease outbreak using
the SIR model [3, 4], we demonstrate that, for an equal
number of quarantined individuals, the neural-network-
informed strategy manages to contain the disease out-
break more effectively than alternative standard contact-
tracing strategies, while autonomously and dynamically
adapting to the specifics of the outbreak using only the
information about the first confirmed cases. Further-
more, since for many diseases immunity is not lasting,
we also demonstrate how the neural-network-informed
approach can be used to efficiently prevent a new dis-
ease from becoming endemic when there is a possibility
of reinfection (SIRS model). We envision that similar
methods can be employed in public health to control epi-
demic outbreaks and to eradicate endemic diseases.

RESULTS

Epidemic outbreak model and containement
strategies

We model an epidemic outbreak using an agent-based
SIR model [1, 23] (see details in Methods, “SIR model”),
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FIG. 1. SIR model and containment strategies. a We consider a population of 105 individuals moving on a square lattice
(320 × 320 cells). Each individual can be either susceptible (S, grey), infectious (I, orange), or recovered (R, black). At each
time step, the susceptible individuals become infectious with probability β when they occupy the same cell as an infectious
individual, and the infectious individuals recover with probability γ becoming immunized against the disease. b Temperature
of individuals that are healthy (S and R, 36.8± 1.0) and infectious (I, 37.4± 1.2); note the range of asymptomatic individuals,
i.e., infectious individuals with temperature in a healthy range. c Disease spread at times t = 20, 50, 100 in the absence of
any containment measures and d corresponding fraction of the population in each category; unchecked, the disease spreads to
almost all the population. e Disease spread using standard contact tracing to isolate potentially infectious individuals starting
at t = 20 (dashed vertical line) and f corresponding fraction of the population in each category; the disease spreads more
slowly than in a, but is not contained. g Disease spread when a total lockdown is implemented at t = 20 (dashed vertical
line) preventing any further spread of the disease and h corresponding fraction of the population in each category. See also
supplementary video 1.
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where the population consists of N = 105 individuals
distributed uniformly on a square lattice with 320× 320
cells, resulting in an average density of 0.98. The individ-
uals move as random walkers on the lattice [24, 25] being
each confined to a region with an average radius of r = 10
cells [26]. All their positions are updated simultaneously
at each time step. Each individual always belongs to one
of the SIR categories (Figure 1a). At the beginning of the
simulation, 50 individuals (0.05% of total population) are
randomly selected and made infectious (I). The rest of the
population, instead, is initialized as susceptible (S). The
disease is transmitted with probability β when suscepti-
ble and infected individuals are occupying the same cell,
to mimic the short-range interactions necessary for dis-
ease spreading. An infected individual has a probability
γ of recovering in each time step, after which it becomes
immunized against the disease. We choose the values of β
and γ to have a stochastic evolution with basicreproduc-
tive number in the range of those observed for typical vi-
ral diseases such as influenza [27, 28] or Covid-19 [29, 30]
(see Supplementary Note 1 and Supplementary Figure
S1). Each individual is also characterized by a “temper-
ature”, which slightly increases as the disease develops;
the temperature is normally distributed and corresponds
to 36.8± 1.0 for healthy (i.e., susceptible and recovered)
individuals, and to 37.4 ± 1.2 for infectious individuals
(Figure 1b), so that there is a significant overlap between
the two distributions and, thus, some individuals can be
“asymptomatic”. We let the model evolve for 150 time
steps, which can be thought of as the days of an epi-
demic outbreak that lasts approximately six months, but
can easily be rescaled to fit another time scale.

Figure 1c provides an example of the free evolution of
the outbreak in the absence of any containment measures.
By t = 20, the disease has spread from the initial infec-
tious individuals creating a few hotspots. These hotspots
steadily grow (t = 50) until most of the population has
been infected (t = 100) and the outbreak starts to sub-
side. Figure 1d shows how the fraction of individuals in
each category varies over time: as the disease spreads, the
number of susceptible individuals steadily decreases and
the number of recovered ones increases, while the number
of infectious individuals initially grows and then slowly
decreases until the outbreak ends because essentially the
whole population is immunized.

The spread of the disease can be controlled by enact-
ing containment measures. For example, Figures 1e and
1f show the evolution of the outbreak when potentially
infectious individuals are isolated based on standard con-
tact tracing [18, 19, 31, 32] (see details in Methods “Con-
tact tracing”). At each time step, a fixed number of tests
(Ntest = 100 � N) are performed to assess whether in-
dividuals are infectious. The value of Ntest is set low
enough to simulate a limited access to testing so that
only a small portion of the population can be tested
(15% in 150 time steps). The individuals to be tested are
selected randomly from the susceptible individuals with
the highest temperature, i.e., those that show more clear

symptoms. Selecting the individuals to be tested in this
way presents two advantages compared to a purely ran-
dom testing strategy: it avoids a slow start (with an ini-
tial probability of success around 1/2000), and it is more
representative of reality (where symptomatic cases first
indicate an outbreak). For simplicity, we assume that the
test never fails and that there is no delay between per-
forming the test and receiving the result. However, we
remark that the task of identifying the infectious individ-
uals is made harder by the fact that some of their tem-
peratures are in the healthy range (Figure 1b), making
them asymptomatic. The individuals who test positive
are quarantined: from that time step on, they neither
move nor interact with the rest of the population. For
the tested individuals, the isolation is temporary, so the
system knows when they stop being infectious and can
safely return to interact with the rest of the population.

Due to the limited number of tests, quarantining only
the individuals that test positive is not enough to con-
tain the outbreak. It is therefore necessary to use con-
tact tracing to isolate also individuals who have not been
tested. (While testing starts from the first time step,
contact tracing and isolation of individuals starts only
at t = 20.) For all detected infectious individuals, we
trace back their previous contacts up to 50 time steps
in the past. Within this group of individuals that inter-
acted with confirmed cases, we test those with the highest
temperature. We rank the other individuals according to
their number of contacts with infectious individuals, and,
given the same number of contacts, according to their
current temperature. We isolate a number of individuals
until reaching a predetermined fraction of the population
(here, 25%). (See details in Methods “Contact tracing”.)

It is interesting to compare the free evolution of the
outbreak (Figures 1c-d) with the case with isolation
based on contact tracing (Figures 1e-f). While at t = 20
both outbreaks are similar, the containment measures
take hold almost immediately, significantly reducing the
size of the outbreaks and the fraction of individuals that
are infectious at the same time. The epidemic outbreak
remains confined to a few areas reaching only a part of
the population (Figure 1e) and the curve of infected in-
dividuals is flatter (Figure 1f). We remark that, despite
its success in slowing down the spread rate of the disease,
also the strategy relying on isolation of potentially infec-
tious individuals identified by contact tracing does not
lead to a complete suppression of the outbreak, as can
be seen from the fact that nearly 20% of the population
is infectious still at t = 150.

Complete eradication of the disease is in principle pos-
sible by adopting an unrealistic total lockdown, where
the whole population is quarantined simultaneously (Fig-
ures 1g-h). From t = 20, all individuals are isolated so
that they cannot move or interact. Figure 1g shows how
this leads to an almost immediate containment of the dis-
ease hotspots. More interestingly, Figure 1h shows how
the fraction of infectious individuals quickly drops down
and, unlike for the free evolution (Figures 1c-d) and the
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contact-tracing isolation (Figures 1e-f), reaches zero by
t = 120, so that the disease is extinguished by the end of
the simulation.

Different containment strategies lead to different eval-
uations of the outbreak. The free evolution (Figure 1c-d)
and the total lockdown (Figure 1g-h) approach represent
the two limiting policies, leading to the least and the
most effective containment. The contact-tracing isola-
tion (Figure 1e-f) achieves an intermediate level of con-
tainment, but does not achieve eradication of the disease,
despite isolating up to about 25% of the population.

Neural-network-informed testing

It would be desirable to achieve disease eradication as
in the total-lockdown strategy (see Figures 1g-h), but
isolating only part of the population as in the contact-
tracing strategy (see Figures 1e-f). To achieve this, we
propose a strategy that employs a neural network to in-
form which individuals to test and isolate.

The schematic of the neural network we employ is
shown in Figure 2a (see details in Methods “Neural net-
work”). In general, a neural network receives some in-
puts, elaborates them through of a series of hidden layers
of artificial neurons, and returns an output [33]. In our
case, the input consists of contact-tracing information for
a given individual n for the last 10 time steps. Specifi-
cally, we provide the neural network with five time series:
R4,n(t), R8,n(t), R16,n(t), C i

n(t), and C i
n/C

tot
n (t). The

first three indicate the number of tested infectious indi-
viduals within a distance r = 4, 8, and 16 cells from the
considered one. Ctot

n (t) is the total number of contacts
(i.e., defined as individuals occupying the same cell at the
same time) and C i

n(t) is the number of contacts with con-
firmed infectious individuals. Then, the neural network
elaborates this information through three dense layers of
artificial neurons. Finally, the neural network outputs a
value p, representing the risk of being infectious at the
current time step, between 0 for a putatively healthy in-
dividual and 1 for a putatively infectious individual. In-
dividuals with p > 0.995 are immediately isolated, while
individuals with p ∈ [0.5, 0.995] are slated to be tested,
starting from the individuals with the highest temper-
atures until the depletion of all available tests. In this
way, we manage to freeze the infectious individuals that
are easy to identify, while optimizing the deployment of
the available tests: we use the tests principally to achieve
a better understanding of the extent and distribution of
the disease.

Neural networks are supervised machine learning
methods and, therefore, require training [33]. In general,
the training of a neural network is performed by provid-
ing the neural networks with a series of inputs and cor-
responding known outputs [33]. In our case, we can only
use for training individuals that have already been tested
within each run of the simulation (see details in Methods
“Neural-network training”). Therefore, we start train-

ing at t = 20, when we have tested 2000 individuals.
In subsequent time steps, the size and accuracy of the
training data set increases with the number of performed
tests, so we repeatedly retrain the neural network to im-
prove its performance. This leads to a positive feedback
loop, where a better-trained neural network selects more
efficiently individuals for testing, which in turn provides
better insights into the disease distribution, which finally
improves the training data set available to further im-
prove the performance of the neural network.

Figure 2b depicts the snapshots of the system at
t = 20, 50, 100. The color code is the same as that
used in Figure 1, with the addition of frozen individuals
(F) indicated in light blue. Until t = 20, the outbreak
evolves freely, analogously to Figure 1c, while enough
data are accumulated to train the neural network. From
t = 20 and onward, the neural-network predictions are
used to inform which individuals to isolate and test.
By t = 50, all outbreaks have been identified and sur-
rounded by frozen individuals. Subsequently (t = 100),
the outbreaks remain under control and are prevented
from spreading, in stark contrast with the wide spread of
the disease in free evolution (t = 100 in Figure 1c).

The orange solid line in Figure 2c shows the frac-
tion of the population that is infectious as a function
of time. Shortly after we switch on the neural network
(t = 20), the infectious fraction reaches its maximum
(5.1% at t = 26) and subsequently rapidly decreases to
zero. Correspondingly, the number of recovered (black
solid line) and susceptible (gray solid line) individuals
reach a plateau. In particular, the fraction of individuals
that are infected and eventually recover is 8± 4%.

The number of frozen individuals is initially zero and
quickly increases in the first stages of neural-network-
informed testing, eventually reaching the set value of 25%
of the total population. We can compare the curve of the
infectious individuals using the neural-network-informed
testing and isolation (orange solid line) with the limit-
ing cases of free evolution (orange dotted line, cfr. Fig-
ure 1c) and of total lockdown (orange dashed line, cfr.
Figure 1g). By isolating only 25% of the population, the
neural-network-informed strategy achieves a containment
of the epidemic similar to that achieved by the full lock-
down.

Figure 2d represents the fraction of new infectious in-
dividuals per time step for the neural-network-informed
strategy (orange line) and for the free evolution of the
epidemics (black line). The free-evolution curve reaches
a maximum at t = 59 corresponding to δI(59) = 1.4 ±
0.2%. The curve for the neural-network-informed strat-
egy starts decreasing immediately after isolation starts
at t = 20, corresponding to a peak value δI(20) =
0.55± 0.08%, and stably reaches zero around t = 50.

Figures 2e-g provide comparisons with a standard
contact-tracing strategy, where the same number of indi-
viduals are tested and isolated as described in detail in
the previous section. Figure 2e shows snapshots of the
system at t = 20, 50, 100: starting from the same number
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FIG. 2. Improved outbreak containment using neural-network-informed testing. a Structure of the neural network.
The inputs (table on the left) are R4,n(t), R8,n(t), R16,n(t), C i

n(t), and C i
n(t)/Ctot

n (t), where Rr,n is the number of confirmed
infectious individuals in a radius r from the individual n, C i

n is the number of contacts that individual n has had with confirmed
infectious individuals, and Ctot

n the total number of contacts for individual n; for each parameter, the input includes the history
during 10 time steps ([t − 9, t]). The neural network analyzes these inputs through three dense layers and outputs a value p
from 0 (individual predicted to be healthy) to 1 (individual predicted to be infectious): individuals with p > 0.995 are directly
quarantined, and individuals with p ∈ [0.5, 0.995] are tested starting from individuals with the highest temperatures until the
depletion of the available tests. b-d Disease evolution when the testing and isolation strategy is determined based on the
output from a neural network: b Snapshots of susceptibles (S, grey), infectious (I, orange), recovered (R, black), and frozen
(F, blue) individuals at time steps t = 20, 50, 100. c Corresponding fraction of the population in each category compared
with the two limiting cases of free evolution (dotted orange line, see also Figures 1c-d) and full lockdown (dashed orange
line, see also Figures 1g-h). The isolation of individuals starts at t = 20 (dashed black line). The solid lines indicate the
average over Nruns = 100, while the shaded areas correspond to 90% confidence interval. d The number of new cases δI for
the neural-network-informed testing (orange line) compared to the free evolution (black line). e-g Comparison to a standard
contact-tracing strategy (see Figures 2e-f) where the same number of individuals are quarantined as in b-d where we employ
the neural-network-informed strategy: the number of infectious individuals and the spread of the disease are greatly reduced
when employing the neural-network-informed strategy. See also supplementary video 2.

of hotspots (t = 20), contact tracing manages to identify
all regions reached by the disease (t = 50), but the disease
can still spread due to the limited number of individuals
that can be isolated (t = 100). Figure 2f shows that,
differently from the case of the neural-network-informed
strategy (Figure 2c), the increase of the fraction of in-
fected individuals slows down for some time steps, but
then starts again to grow reaching a peak at t = 120 cor-

responding to about 20% of the total population. The
total number that have been infected at the end of the
simulation (i.e., all infectious and recovered individuals
at t = 150) is strikingly lower for the neural-network-
informed strategy (6% to 14%) than for the contact-
tracing-based strategy (30% to 89%). The wide shaded
area in Figure 2f is nearly 7 times larger than in Figure 2c,
showing that the contact tracing is less stable against dif-
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ferent evolution patterns of an epidemic with same under-
lying SIR parameters. The orange line in Figure 2g shows
the fraction of new infectious individuals δI as a function
of time, which is non-zero at the end of the simulation,
unlike for the neural-network-informed strategy (orange
line in Figure 2d). We present a quantitative compar-
ison of the performance of the neural-network-informed
strategy and this contact-tracing strategy in Supplemen-
tary Note 2 and Supplementary Figure S2. Additionally,
we have compared the neural-network-informed strategy
with alternative contact-tracing strategies in Supplemen-
tary Note 3 and Supplementary Figure S3. We can there-
fore conclude that contact tracing is less effective than
the neural network for the same number of frozen indi-
viduals.

Automatic and dynamic adaptation to the outbreak
characteristics

An important characteristic of the neural-network-
informed strategy is that it can automatically and dy-
namically adapt itself to the underlying characteristics
of the outbreak. In our model, this means that the neu-
ral network does not need to have explicit knowledge of
the underlying SIR model. More generally, the neural
network can adapt to other kinds of outbreaks and also
take into account the effects of the containment measure
put in place.

Figure 3 demonstrates the ability of the neural-
network-informed strategy to automatically and dynam-
ically adapt itself to the underlying characteristics of the
outbreak. The colored solid lines in Figures 3a-c repro-
duce the performance of the strategy presented in Fig-
ures 2b-d, which is informed by a neural network (NNA)
trained on the data obtained from an outbreak (SIRA,
βA = 0.6 and γA = 0.03), in terms of the evolution of
infectious individuals (orange line, Figure 3a), frozen in-
dividuals (blue line, Figure 3b), and new infections in
each timestep (yellow line, Figure 3c). We then apply
NNB, i.e., another neural network trained on a different
outbreak whose underlying SIR model has a slighlty dif-
ferent transmission rate (SIRB, βB = 0.8 and γB = 0.03).
The resulting performance can be seen in the gray lines
in Figures 3a-c. While overall NNB manages to improve
the outbreak with underlying SIRA model compared to
its free evolution, it performs much worse that NNA. At
the end of the simulation in Figures 3a, the fraction of in-
fectious individuals is still in the range (0.12% to 13.7%)
of the population for the gray confidence bands, while
the overall fraction of individuals in isolation is in the
range (30% to 72%), as shown in Figures 3b. This sug-
gests that, thanks to its training using the information
acquired by the testing during the first 20 time steps, the
neural-network-informed strategy gets fine-tuned to the
specific characteristics of the underlying outbreak.

We further validate the fine-tuning of the neural net-
work by training NNB on the testing data obtained from

the outbreak with underlying model SIRB. The colored
lines in Figures 3d-f show the results of applying NNB

on the SIRB outbreak, which demonstrate a good con-
tainment of the outbreak. Instead, the gray lines show
what happens when using NNA, which leads to a much
worse outcome. In this scenario, the peak for the curve
of infected is around t = 84 and 25.7% against 8.1% of
the population for the training performed on SIRB. Fig-
ures 3f shows that δI oscillates between 540 and 995 new
cases per time step in the interval t ∈ [20, 73] before de-
creasing.

Disease eradication with possibility of reinfection

We now consider the case when the immunity against
the disease is not permanent [34–36]. Thus, we consider
a SIRS model (Figure 4a), which is an extension of the
SIR model where recovered individuals have a probability
ρ at each time step to become again susceptible [34, 35]
(see details in Methods “SIRS model”). In the absence
of any containment measures, the possibility of reinfec-
tion leads to an endemization of the disease. Figure 4b
shows such free evolution of the disease: from the ini-
tial hotspots (t = 20), the disease spreads quickly to a
large portion of the population (t = 50) until reaching
a steady state. Figure 4c shows how the fraction of in-
dividuals in each category varies over time: during the
initial spread of the disease, the number of susceptible in-
dividuals steadily decreases and the number of infectious
ones increases; once the disease reaches its steady state,
the fraction of infectious individuals stabilizes to a value
that depends on the characteristics of the SIRS model,
i.e., on the value of its parameters β, γ and ρ. Therefore,
the disease becomes endemic [1].

Figure 4d-e show the development of the disease when
a standard contact-tracing-based containment strategy is
implemented, like that employed in Figures 1e-f. The
solid lines represents the averages for susceptibles (S,
gray), infectious (I, orange), recovered (R, black) and
frozen (F, blue) individuals throughout the simulation.
The color bands, which denote the 90% confidence inter-
val, is larger than those in Figure 2f; this implies that the
performance of the contact-tracing strategy can vary sig-
nificantly depending on the specific outbreak. It can be
seen that this containment approach manages to reduce
the number of infectious individuals in the steady state
of the disease, but not to eradicate the disease itself.

Finally, Figure 4f-g show the performance of the
neural-network-informed strategy. We employ the same
approach and neural network architecture shown in Fig-
ure 2a and the same strategy that we employed to contain
the outbreaks in the SIR model shown in Figures 2b-d.
Briefly, we start testing individuals from the beginning of
the simulation accumulating data to train the neural net-
work. From t = 20, we start training the neural network
to predict infectious individuals and use this informa-
tion to decide which individuals to isolate and test. The
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a b c
SIR A SIR A SIR A

d e f
SIR B SIR B SIR B

FIG. 3. Automatic and dynamic adaptation of the neural network to the underlying SIR parameters. Two
independent neural networks (NNA and NNB) are trained for two SIR models (SIRA and SIRB, respectively) with different
parameters (βA = 0.6 and γA = 0.03 for SIRA, and βB = 0.8 and γB = 0.03 for SIRB). SIRA and NNA are the same as those
employed in Figures 2b-d. a Infectious individuals (orange line), b frozen individuals (blue line), and c new infections (yellow
line) when NNA is used on SIRA. The gray lines are the corresponding curves when NNB is used instead, showing a clear
decrease in performance. d-f Corresponding plots where NNB (colored lines) and NNA (gray lines) are used on SIRB. Overall,
these results show that the neural network gets automatically optimized for the parameters of the underlying outbreak. In all
cases, the shaded areas represent the 90% confidence intervals obtained from 100 simulations. See also supplementary video 3.

neural-network-informed strategy manages to eradicate
the disease, as can be seen from the fact that the frac-
tion of infectious individuals approaches zero by the end
of the simulation (orange solid line in Figure 4g), while
the number of susceptible individuals increases as recov-
ered individuals gradually lose their immunity. There-
fore, by employing the neural-network-informed strategy,
it is possible to prevent the initial outbreak from leading
to the endemization of the disease.

DISCUSSION

The current outbreak of the novel coronavirus dis-
ease (COVID-19) [7, 37–40] has dramatically brought
to worldwide attention the crucial importance of epi-
demiological models for choosing the best strategies and
policies to contain disease outbreaks [6, 7, 9, 13, 20].
Machine-learning approaches have been already proposed
to help disease diagnosis [41] and epidemics handling [13].
In fact, in the last few years, various neural-network ar-
chitectures have been employed to manage human dis-
eases [42–45], such as malaria [46], and animal diseases,

such as in swine flu [47]. In this work, we have now
shown how a neural-network-informed strategy can im-
prove the containment of an epidemic, even when only a
small number of specific tests is available and some of the
individuals are asymptomatic. This improvement can be
seen in three key aspects. First, integrating the neural
network into the outbreak handling improves the per-
formance of contact tracing, while performing the same
number of tests and isolating the same fraction of indi-
viduals. Second, the neural network autonomously tunes
its weights to the ongoing outbreak, without needing to
explicitly know its underlying model or its parameters,
and therefore does not require a priori knowledge of the
disease outbreak characteristics. Third, since the neural
network is regularly retrained as new data become avail-
able, it can automatically and dynamically adapt itself
to the evolution of the outbreak as well as to the changes
in the behavior of the population, e.g., due to contain-
ment measures or different social habits. As a striking
example, we have shown that, in the case of temporary
immunization, the neural-network-informed strategy can
prevent a disease outbreak from becoming endemic.

Even though we used a SIR model to describe the dy-
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FIG. 4. SIR model with temporary immunity (SIRS). a We consider a model with possibility of reinfection (SIRS
model), where at each time step, recovered individuals have a probability ρ of becoming susceptible again (specifically, we use
β = 0.06, γ = 0.03, and ρ = 0.02). Without countermeasures, this leads to an endemization of the disease. b Disease spread at
t = 20, 50, 100 in the absence of any containment measures and c corresponding fraction of the population in the susceptible
(S, gray line), infectious (I, orange line) and recovered (R, black line) categories; the endemization can be inferred from the
stabilization of the fraction of infectious individuals towards the end of the simulation. d Disease spread using standard contact
tracing to isolate potentially infectious individuals starting at t = 20 (dashed vertical line in f) and e corresponding fraction
of the population in each category, including frozen individuals (F, blue line); while the disease spreads less, it still becomes
endemic. f Disease spread when employing a neural network to inform testing starting at t = 20 (dashed vertical line in g) and
g corresponding fraction of the population in each category; in this case, the disease is completely eradicated. The dashed lines
in e and g correspond to the free evolution of the disease and are reported from c for comparison. In all cases, the solid lines
indicate the average over multiple runs (Nruns = 100), while the shaded areas correspond to 90% confidence intervals. See also
supplementary video 4.

namics underlying the disease, the neural network will
automatically adapt itself to different underlying dynam-
ics described by more complex epidemiological models,
which might include, e.g., the disease incubation time
[9], delays in the testing process [19], or even different
patterns of movement of the individuals (e.g., periodic
motion, and long-range travel) [10]. It is also possible to
provide the neural network with demographic informa-
tion (e.g., individual risk factors, such as age, employ-
ment, and preexisting conditions) as well as with spatial
information [48] (e.g., the location of the individuals, dif-
ferentiating various places of aggregation, such us hospi-
tals, markets, and schools), or even with simple-access
medical tests (e.g. cough recordings [49]). For example,
in order to construct the lattice information, one can la-

bel the individual data by the zip code of residence area
to have anonymous spatially-resolved data. In this case,
the structure of the lattice would be given by the zip
codes. Another possibility could be to group individuals
to have a coarse-graining according to family groups or
neighbourhood spatial labelling. The key point is that
each labelling structure will have its own specific neural-
network-informed containment strategy after a first stage
of training to adapt the testing strategy to the local char-
acteristic and temporal evolution of the specific disease.
Finally, the neural-network-informed approach presented
in this work can be generalized to other situations, such
as fire prevention [50] or econometrics [51].
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METHODS

SIR model

We divide the population of N = 105 identical indi-
viduals into three epidemiological categories: susceptible
individuals S, infectious individuals I, and recovered in-
dividuals R, as in the original SIR model [3]. The individ-
uals move on a square lattice with side l = 320 according
to a stochastic model [24, 52]. The initial positions of the
individuals on the square lattice are random and drawn
from a uniform distribution. We store the latter values
xn(0) = [xn(0), yn(0)] throughout the simulation as the
area of residence for each individual. The position of
each individual n ∈ [1, N ] at each time step t ∈ [0, 150]
is given by its coordinates xn(t) = [xn(t), yn(t)]. Each
individual is an independent random walker confined to
move within a small area of the lattice centered around
its initial random position xn(0) = [xn(0), yn(0)]. The
position of each individual evolves as

xn(t+ 1) = xn(t) + ∆xn(t), (1)

with displacements ∆xn(t) = [∆xn(t),∆yn(t)] for each
individual selected inside its Moore neighborhood [53],
given by

∆xn =


−1 with probability 1

3 + k[xn(t)− xn(0)]

0 with probability 1
3

+1 with probability 1
3 − k[xn(t)− xn(0)]

(2)

∆yn =


−1 with probability 1

3 + k[yn(t)− yn(0)]

0 with probability 1
3

+1 with probability 1
3 − k[yn(t)− yn(0)]

(3)
where k = 0.04 determines the radius rk ≈ 10 cells within
which each individual moves. The positions of all individ-
uals are updated synchronously and independently from
each other.

The spread of the infection occurs because when a sus-
ceptible individual occupies the same cell as an infec-
tious individual, it becomes infectious with probability
β in each time step. The transmission applies only for
the infectious individuals that are not frozen. Each in-
fectious individual becomes recovered with probability γ
at each time step. The parameters used are β = 0.6
and γ = 0.03, except for Figure 3, where we also em-
ploy β = 0.8. The choice of the SIR parameters is moti-
vated in order to have a stochastic evolution with basic
reproductive number R0 ≈ 3.3 in the range of those ob-
served for typical viral diseases such as influenza [27, 28]
or Covid-19 [29, 30] (see Supplementary Note 1 and Sup-
plementary Figure S1).

Each individual is also characterized by a “tempera-
ture”, which is normally distributed and corresponds to
36.8 ± 1.0 for healthy (i.e., susceptible and recovered)

individuals, and to 37.4 ± 1.2 for infectious individu-
als, with a great overlap between the two distributions
(Figure 1b). The temperature characterizes the level of
symptomaticity continuously, instead of adopting a bi-
nary division between asymptomatic and symptomatic
cases [54–57]. The temperature Tn for each individual
raises to T in = Tn + dTn, when the corresponding indi-
vidual becomes infectious. In the case dTn ≈ 0, the in-
dividuals are asymptomatic, while they are symptomatic
for dTn > 0.

SIRS model

The SIRS is an alternative to the SIR model that
assumes the immunization to the disease is temporary.
Therefore, recovered individuals lose immunization and
return susceptible with probability ρ in each time step.
We employ ρ = 0.02.

Contact tracing

We present here the containment strategy based on
contact tracing employed in this work, as opposed to
the neural-network-informed one. In the Supplementary
Note 3 and Supplementary Figure S3, we report other
possible approaches, as alternative comparisons.

We keep track of individuals that occupy the same cell
at a certain time step by introducing the contact matrix:

cnm(t) = δ(xn(t)− xm(t)), (4)

where δ is the Kronecker delta, which has value 1 if the
pair of individuals n and m occupy the same cell at time
t, and 0 otherwise. Thus, the total number of contacts
for individual n for the 50 time steps before time t is

Ctot
n (t) =

t∑
τ=t−50

∑
m6=n

cnm(τ). (5)

The number of contacts with confirmed infectious indi-
viduals is

C i
n(t) =

t∑
τ=t−50

∑
m6=n

cnm(τ)δim(t), (6)

where δim(t) is 1 if individual m has already been tested
and found positive at time t, and 0 otherwise. When
implementing the lockdown strategy based on contact
tracing, we list the agents in descending order as a func-
tion of C i

n(t), and we sort those with equal value based
on their temperature. At each time step, we select for
testing the first Ntest = 100 individuals in this list. We
use the rest of such list for selecting individuals to freeze,
whose number is set to match that of the neural-network-
informed strategy. In this way, we can compare the two
approaches using the same number of tests and the same
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number of frozen individuals. When the target number
of individuals to isolate is larger than the individuals in
the contact list (e.g., at the beginning of the simulation
when the number of confirmed cases is small), we build
an additional list from where to select the remaining indi-
viduals, which includes individuals that never had direct
interactions with confirmed cases, but have been within
a radius of 8 cells in the last 50 time steps; we sort also
this additional list based on the temperature of the indi-
viduals.

Neural network

We employ a dense neural network with three hidden
layers with 16 neurons each and ReLU activation function
[58, 59]. The output layer has one single neuron with a
softmax activation function returning a value p ∈ [0, 1].
Additionally, we use dropouts for the hidden layers as a
way to avoid overfitting [60] (dropout rate 0.2, so that in
each training epoch only 80% of the neurons is activated).

The input to the neural network at time t includes
R4,n(t), R8,n(t), R16,n(t), C i

n(t), and C i
n/C

tot
n (t) for time

steps [t−9, t], where C i
n(t) and Ctot

n (t) are the number of
infectious and total contacts (Eqs. 5 and 6), and Rr,n(t)
is the number of individuals that have tested positive
within a radius r:

Rr,n(t) =
∑
i

δ (r− ‖ xn(t)− xi(t) ‖) , (7)

where the summation is over all infected individuals.

The training of the neural network is performed using
information relative to the individuals that have already
been tested (which is split between a training set and a
validation set [61]). The loss function is the mean square
error, we use the stochastic gradient descent method im-
plemented in the Adam optimizer [62, 63], and the num-
ber of training epochs is fixed to 100 (see Supplementary
Figure S1). While we use only two labels for the training
(0 for susceptible individuals and 1 for infectious individ-
uals), the trained network returns a prediction that is a
continuous value p ∈ [0, 1].

Using the prediction of the network, we split the indi-
viduals that have not been tested yet into three groups:
(1) p > 0.995: individuals with a high chance of being
infectious, who are frozen without testing. (2) 0.5 < p <
0.995: individuals with a medium chance of being infec-
tious, amongst which the Ntest = 100 individuals with
the highest temperature are tested. (3) p < 0.5: individ-
uals with a low chance of infection.

We implement the neural network using the Python
libraries Tensorflow and Keras [64].
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[53] Seitz, M. J. & Köster, G. Natural discretization of pedes-
trian movement in continuous space. Phys. Rev. E 86,
046108 (2012).

Page 11 of 12 AUTHOR SUBMITTED MANUSCRIPT - MLST-100290.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



12

[54] Leung, K. Y., Trapman, P. & Britton, T. Who is the in-
fector? Epidemic models with symptomatic and asymp-
tomatic cases. Math. Biosc. 301, 190–198 (2018).

[55] Stella, L., Mart́ınez, A. P., Bauso, D. & Colaneri, P.
The role of asymptomatic individuals in the Covid-
19 pandemic via complex networks. arXiv preprint
arXiv:2009.03649 (2020).

[56] Arcede, J. P., Caga-Anan, R. L., Mentuda, C. Q. & Mam-
meri, Y. Accounting for symptomatic and asymptomatic
in a SEIR-type model of COVID-19. Math. Modelling
Natural Phenomena 15, 34 (2020).

[57] Chen, Y.-C., Lu, P.-E., Chang, C.-S. & Liu, T.-H. A
time-dependent SIR model for COVID-19 with unde-
tectable infected persons. IEEE Trans. Network Sci. Eng.
7, 3279–3294 (2020).

[58] Agostinelli, F., Hoffman, M., Sadowski, P. & Baldi, P.
Learning activation functions to improve deep neural net-
works. arXiv preprint arXiv:1412.6830 (2014).

[59] Behnke, S. Hierarchical Neural Networks for Image In-
terpretation, vol. 2766 (Springer, 2003).

[60] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I.
& Salakhutdinov, R. Dropout: a simple way to prevent
neural networks from overfitting. J. Mach. Learn. Res.
15, 1929–1958 (2014).

[61] Krogh, A. & Vedelsby, J. Neural network ensembles,
cross validation, and active learning. In Advances in neu-
ral information processing systems, 231–238 (1995).

[62] Kingma, D. P. & Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980 (2014).

[63] Ruder, S. An overview of gradient descent optimization
algorithms. arXiv preprint arXiv:1609.04747 (2016).

[64] Chollet, F. et al. Keras. https://keras.io (2015).

Page 12 of 12AUTHOR SUBMITTED MANUSCRIPT - MLST-100290.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t


