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Quantitative analysis of disease-related metabolic
dysregulation of human microbiota

Maria Rita Fumagalli,1,2 Stella Maria Saro,3 Matteo Tajana,3 Stefano Zapperi,3,4 and Caterina A.M. La Porta1,2,5,*

SUMMARY

The metabolic activity of all the micro-organism composing the human micro-
biome interacts with the host metabolism contributing to human health and
disease in a way that is not fully understood. Here, we introduce STELLA, a
computational method to derive the spectrum of metabolites associated with
the microbiome of an individual. STELLA integrates known information on meta-
bolic pathways associatedwith each bacterial species and extracts from these the
list of metabolic products of each singular reaction by means of automatic text
analysis. By comparing the result obtained on a single subject with the metabolic
profile data of a control set of healthy subjects, we are able to identify individual
metabolic alterations. To illustrate themethod, we present applications to autism
spectrum disorder and multiple sclerosis.

INTRODUCTION

Gut microbiota is represented by a diverse and dynamic population of microorganisms, including bacteria,

archaea, and eukarya, that live in the gastrointestinal tract of an individual and develop a deeply complex

relationship of mutually advantageous exchanges with the host organism.1,2 Gut microbiota-host interac-

tion involves the production and consumption of metabolites. In particular, gut microbiota is responsible

for the synthesis of biomolecules, such as vitamins and enzymatic proteins, that the host cannot produce.1,2

The study of gut microbiota has rapidly evolved in the last few years, driven by the development of new

techniques for metagenome sequencing3 and the increasing evidence showing the existence of a strong

relationship between the equilibrium of the microbiota and the health of the host.4

The microbiota, by contributing to the metabolic activity of an individual, exerts a marked influence on its

physiological and pathological conditions, playing an important role in processes such as regulation and

development of host immunity, digestion, and the integrity of the specific environment they colonize.1,5,6

Thus, alterations in the microbiota can lead to major consequences for the health of an individual. Micro-

biota dysregulation has been indeed observed in different diseases including inflammatory bowel syn-

drome and obesity, but also disorders related to the CNS.2,4,5,7

Recent studies have revealed that the intriguing interactions between the gut and the CNS, the so-called

gut-brain axis, are modulated by the complex communication network of themicrobiota.2,8 For this reason,

analyzing the composition of the gut microbiome is of pivotal interest in the study of CNS-related patho-

genesis.2 Furthermore, recently proposed strategies to re-balance dysbiosis appear to be effective in the

treatment of different pathologies.2,4

The microbiome is usually quantified in terms of operational taxonomic units (OTUs), an operational

definition used to classify groups of closely related genomic sequences, which may refer to species, genus,

or class. The diversity in a microbial community is then a widely used metagenomic marker of metabolic

disorders and pathological conditions. A reduction of microbiome diversity has been linked to a number

of diseases, such as inflammatory bowel disease, obesity and metabolic syndromes, and HIV.7,8 For other

pathologies linked to dysbiosis, such as autism spectrum disorder (ASD) andmultiple scelrosis (MS), micro-

biome alterations cannot easily be expressed in terms of loss (or gain) of diversity and it is not possible to

observe major global shifts in bacterial community composition.8,9

Here, we introduce STELLA, a computational strategy to investigate microbiome dysregulation that goes

beyond a mere evaluation of its composition in terms of OTUs and is based instead on the quantification of
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metabolites associated with a givenmicrobiomic profile. To illustrate our method, we report the results ob-

tained from the analysis of different datasets related two CNS-related disorders: ASD andMS. In particular,

we analyze three 16S rRNA sequencing datasets obtained from autistics and healthy subjects10–12 and two

datasets referred toMS.9,13 We apply STELLA specifically to 16S rRNA sequencing data from fecal samples,

but the algorithm could in principle be applied to any kind of microbiome dataset.

RESULTS

Algorithm construction and validation

STELLA is a reference-based method that associates to each patient a vector whose elements are a proxy

for the amount of metabolites produced and consumed by its microbiota (see Figure 1). The algorithm uses

the MACADAM14 and METACYC15 databases to retrieve the metabolic pathways present in microbiota

OTUs and the metabolites involved in the reactions composing the pathway. We consider the whole set

of metabolic pathways available for each OTU as active, and take into consideration both stoichiometry

and reaction directionality when associating a production/consumption score to each metabolite. Next,

we merge this score matrix with information on OTUs abundances in the patients, and weigh the contribu-

tion of each pathway accordingly to OTUs abundance. Hence, from a dataset containing OTUs abun-

dances, the STELLA algorithm allows us to estimate the associated metabolite concentrations. Details

about the algorithm can be found in the STAR methods section.

In order to quantify the quality of the predictions of STELLA, we compared its output metabolites with the

experimental data reported by Kang et al.10 This database contains 59 key metabolites that display a signif-

icantly different concentration between children with ASD and neurotypical patients. In particular, we

benchmarked the experimental data by assigning a z-score to each metabolite, irrespectively of the status

of the patient (see STAR Methods). A summary of the experimentally obtained z-scores and of the predic-

tions of STELLA are reported in Figures 2A and 2B, respectively.

STELLA outputs whether a specific compound is likely to be produced or consumed for a given set of OTUs

but does not allow to estimate its concentration. For this reason, we compared the sign of the computed

z-scores with the sign of the corresponding experimental z-scores. To assess the quality of predictions

Figure 1. Schematic of the algorithm

The OTU abundances matrix obtained from microbiota sequencing experiments are combined with information on the

metabolic pathways present in each OTU, retrieved from the Macadam database, and with the stoichiometry of

metabolites produced and consumed in each pathway, obtained from the Metacyc database. All the information is

combined to obtain a metabolite-patient matrix for each experimental dataset.
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made by STELLA, we evaluate the confusionmatrix (Figure 2C) and the corrsponding Fb-scores, a widely used

measure of the accuracy of a specific test. Depending on the value of b, the Fb-score weights differently recall

and precision of the test so that b> 1 weights more recall while b< 1 precision. Previous studies used the F1
score to benchmark metabolite prediction algorithms. In particular,16 computed the F1 score for the predic-

tion of metabolite occurrences using different algorithms, comparing MIMOSA,17 Mangosteen,16 and Melon-

nPan.18 In our case, we obtain the following values for STELLA: F1 = 0:67, F2 = 0:73, and F1=2 = 0:61. The

results show that the F1 score we obtain is comparable to the ones reported in previous studies.16

Dataset merging and batch effect removal

In the following, we provide illustrative examples of the results that can be obtained when the STELLA al-

gorithm is used to distinguish among groups with different health conditions. To this end, we apply STELLA

to microbiome datasets related to ASD and MS that we collected from the literature. When more than a

single dataset of OTUs is available for the same disease, it is useful to combine the data in order to increase

the statistics over the patients. We perform this step in the case of the ASD data reported in the study by

Kang et al.10 and in the study by Kong et al.11 It is, however, important to verify that merging datasets does

not introduce spurious differences between the groups (or batches) that are due to experimental proced-

ures and are unrelated to the biological process under investigation. Batch effects can indeed be observed

in the patient correlation matrix, as reported in Figure 3A. To remove these spurious correlations, we

employ a method based on singular value decomposition (SVD) as discussed by Font-Clos et al.19 In partic-

ular, we apply a single-step SVD correction on the OTUs abundance matrix obtained merging the datasets

reported in the study by Kang et al.10 and in the study by Kong et al.11 Before batch effect removal, a hi-

erarchical clustering algorithm highlights a spurious separation between the two batches (Figure 3A) which

disappears after batch effect removal (Figure 3B). The result of this procedure can also be observed

through the principal component analysis (PCA). The first principal component in the original merged

data discriminates between the two datasets (Figure 3C), but after application of the batch effect removal

algorithm the two datasets are more mixed (Figure 3D).

A

B

C

Figure 2. Algorithm validation

(A) Heatmap of the z-scores of the metabolites recorded in10 and (B) the corresponding predictions made by the STELLA algorithm.

(C) Confusion matrix for the algorithm predictions.
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Stepwise feature selection for ASD and MS

The results obtained from the PCA (Figures 3C and 3D) and hierarchical clustering (3 AB) suggest that in

order to gain information on micriobiota dysregulation in CNS-related pathologies, we need a classifica-

tion approach that is able to take into account more than a single variable at a time and goes beyond a

simple PCA projection. We thus perform stepwise feature selection through linear discriminant analysis

(LDA), as illustrated in Figure 4A. In particular, we perform a stepwise feature selection on the data by

training an LDA model with 10-fold cross-validation resampling the training set and the validation set

from the complete dataset, selecting the model that maximizes the correctness rate. The procedure

was repeated at least 100 times over reshuffled matrices in order to evaluate the robustness of the model

obtained (see Figure 4B). We imposed a maximum of 15 variables to use as features and verifying that, for

A B

C D

Figure 3. Batch effect removal

(A and B) Correlation matrix of OTUs abundances obtained merging the datasets in the study by Kang et al.10 and Kong

et al.11 before (A) and after (B) batch effect removal. Hierarchical clustering on correlation matrix shows that differences

between the two datasets (gray, red) is predominant in the merged dataset, and the two major blocks disappear after

batch removal. Hierachical clustering does not allow us to distinguish between patients and healthy controls (yellow, blue)

suggesting a more elaborated procedure is needed.

(C and D) Panels show the data from the intersection of data from the study by Kang et al.10 and Kong et al.11 projected

onto the first two principal components and divided into healthy controls (red) and autistic patients (blue) before (C) and

after (D) one-step batch removal. In panel (C), the variance between the data from different datasets is higher than the

distance between the autistic patients and the healthy controls. Different symbols represent the two studies (circles,

triangles as in legend).
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the analyzed datasets, it is sufficient to reach the performance plateau. We apply our strategy to both

OTUs abundances matrix and metabolite matrix (see Figures 4C and 4D) in order to determine the spe-

cific sets of taxonomies and metabolites that most differentiate healthy and pathological profiles. To

reduce the computational effort and the redundancy of the dataset, the LDA procedure was applied

on reduced matrices comprising a subset of uncorrelated OTUs and metabolites (see STAR methods).

Figure 5 summarizes the results obtained through LDA feature selection for ASD, while results for MS are

presented in Figure 6. The complete lists of OTUs and metabolites obtained with our method are reported

in Data S1. Results reported in Figure 5 have been obtained for the combined datasets in the study by Kang

et al.10 and Kong et al.11 after batch removal. For both diseases, we report the heatmaps representing the

selected taxonomies for each replica of the LDA feature selection and the corresponding matabolic com-

pounds. The presence of a specific taxonomy in a given iteration is represented in blue and its absence in

white. Hierarchical clustering shows that a small number of OTUs are choosen in diffrerent replicas, repre-

senting the core of OTUs and metabolites that discrimiate between healthy subjects and patients accord-

ing to LDA analysis. We also report the co-occurrence matrix representing the number of replicas in which

two compounds are both selected as significant by the LDA. Based on these results, we can then recon-

struct the reverse metabolic network. Figures 5B and 6B show the fivemost frequently selectedmetabolites

during the LDA analysis of the metabolite-host matrix and the pathways in which they are mapped. For a

specific metabolite (2-methyladenine), we also report in Figure 5C the pathway-compound network ob-

tained including its correlated compounds.

DISCUSSION

In this paper, we introduced STELLA, an algorithm to infer the metabolic spectrum associated with a given

microbiome profile characterized by the relative abundance of OTUs. To illustrate the relevance of our

approach, we considered microbiome profiles of patients diagnosed with ASD and MS. Using these

data, we inferred the metabolic network and estimated the set of most relevant metabolites associated

with these pathological conditions. Among the metabolites/pathways resulting from dysbiosis in ASD,

the LDA highlights the synthesis of some amino acids such as tryptophane, the biosynthesis of purine,

and cobalamin. According to our analysis, the microbiome of patients with ASD is associated with

Figure 4. LDA algorithm

(A) Schematic of the LDA algorithm. After removal of highly correlated OTUs and metabolites, LDA feature selection is

applied in order to obtain an optimal set of OTUs and metabolites to discriminate between patients (yellow circles) and

healthy controls (blue circles).

(B) Heatmaps show the ensemble of selected OTUs and metabolites for each replica of LDA feature selection for the

combined datasets in the study by Kang et al.10 and Kong et al.11 after batch removal. The presence of a specific OTU or

metabolite in a given replica is represented in blue and its absence in white and ordered using hierarchical clustering.

(C and D) Performance of the models obtained from LDA feature selection. Correctness rate is evaluated after the inclusion of

each new (C) OTU or (D) metabolite. The plots show, for each replica and in chronological order of selection, the increasing

correctness rate of the model after the addition of every taxonomy.
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alterations in the amino acids regulating the sleep-wake cycle and the mood, notably tryptophane, which

helps making melatonin and serotonin.20

In the case of MS, our analysis suggests the involvement of pathway-related energy metabolism, including

glicolysis and gluconeogenesis. A perturbation of the glucose metabolism in MS is confirmed by recent ev-

idence showing a connection between MS and mitochondrial aberrations and impaired glucose meta-

bolism.21 Furthermore, MS was shown to be associated with a strong expression of lactate dehydrogenase

A, which converts pyruvate to lactate, within the perivascular cuff of postcapillary venules supporting the

transmigration of brain-infiltrating macrophages.22

Interest in developing methods to identify relevant molecular compound identities from metagenomes

has grown in recent years. Different methods have been developed, such as MangoSteen,16

MIMOSA,17 and MelonPann.18 MangoSteen uses an approach similar to the one used in the present pa-

per, constructing the connections from sequencing data to compounds. Contrary to our approach, the

method considers all the metabolites linked to dysregulated taxonomies as dysregulated. This assump-

tion can have a huge impact on the results, since a large fraction of metabolites are produced by many

A

B C

Figure 5. LDA feature selection results for ASD

Panel (A) show heatmaps representing the selected taxonomies for each replica of LDA feature selection reordered using hierarchical clustering and co-

occurrence matrix representing the number of replica two compounds are selected as significant by LDA. The presence of a specific taxonomy in a given

iteration is represented in blue and its absence in white. Panels (B and C) Illustrative reconstruction of reverse metabolic network. Plot shows the five most

frequently selected metabolites during LDA analysis of metabolite-host matrix and the pathways in which they are mapped (B). For a specific metabolite

(2-methyladenine), we report the obtained pathway-compound network (C). The network includes 2-methyladenine and its correlated metabolites (r1-r47)

and the related pathways (p1-p35). The complete list of labels is reported Data S1. Lines represent the links between the metabolites (green, light green)

and the pathways (gray). For all the panels, data are reported for the combined datasets from the study by Kang et al.10 and Kong et al.11 after batch

removal.

ll
OPEN ACCESS

6 iScience 26, 105868, January 20, 2023

iScience
Article



different taxonomies and most of them could be not dysregulated, contributing to the balance of the

global metabolites abundances. Furthermore, our method takes into consideration the directionality of

the reactions that is neglected by MangoSteen.

MIMOSA17 is a method based on predicted relative metabolomic turnover, originally developed by Larsen

et al.23 MIMOSA takes into account stoichiometry and the direction of reactions, neglecting reversible re-

actions. The focus of the algorithm is on enzymes, the transformations they catalyze, and the link between

genes and the reactions and metabolites that are annotated in KEGG.24 A crucial step of the MIMOSA al-

gorithm is the removal of commonmetabolites, produced by more than 30 genes, and the normalization of

the stoichiometric matrix in order to obtain the relative contribution of each gene to the production/deple-

tion of each metabolite. The major difference between our method and MIMOSA is that we consider the

rate of a reaction as proportional to the abundance of OTUs, while MIMOSA focuses on the relative abun-

dance of single genes into the whole metagenome.

Our approach and both MangoSteen and MIMOSA are reference-based methods and, as such, the re-

sults are strongly influenced by the completeness of the considered databases. On the contrary, machine

learning-based methods such as MelonnPan18 use elastic net regularization to identify which features are

predictive for the presence of a given metabolite, taking as input both transcriptomic and metabolomic

Figure 6. LDA feature selection result for MS

(A) Heatmaps representing the selected taxonomies for each replica of LDA feature selection reordered using hierarchical clustering and co-occurrence

matrix representing the number of replica two compounds are selected as significant by LDA. The presence of a specific taxonomy in a given iteration is

represented in blue and its absence in white.

(B) Illustrative reconstruction of reverse metabolic network. Plot shows the five most frequently selectedmetabolites during LDA analysis of metabolite-host matrix

and the pathways in which they are mapped. Lines represent the links between themetabolites (green, light green) and the pathways (gray) For all the panels, data

are reported for the dataset in the study by Cekanaviciute et al.9 Metabolites names are reported in the figure, while full pathways names are only reported in

Data S1.
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data. MelonnPan captures metagenome-metabolome associations in a data-driven manner and does not

rely on microbial biochemical annotation. This could lead to a significantly higher prediction accuracy

than reference-based methods when involved species are not well annotated, and to the appearance

of interactions that do not exist in reference databases. On the other hand, the efficiency of

MelonnPan relies on the quality of the training dataset and needs a specific metabolomic input.

In conclusion, we have introduced an algorithm to infer the metabolic profile from a given microbiome and

illustrated its application using data related to two pathologies. Our strategy could help in identifying

possible new targets to make traditional therapies more effective and successful.

Limitations of the study

The main limitation of our approach derives from the incompleteness of the databases used to obtain

metabolic pathways present in microbiota OTUs (i.e. Macadam) and the metabolites involved in the reac-

tions composing the pathway (i.e. Metacyc). Annotation of sequencing and OTUs abundances are affected

by current knowledge, but databases are continuously updated, potentially allowing for improved predic-

tions in the future.

The STELLA algorithm is by its nature semi-quantitative, since it is based on stoichiometric information on

the reactions that are potentially available to a given OTU. The fact that OTUs might have the capability to

perform a specific reaction does not imply that the reaction will be used in a particular context. This limi-

tation can be overcome by methods based on metabolic modeling.25

Additional limitations of our methods come from the fact that the metabolites observed experimentally are

not only produced by the considered OTUs but could also be originated by differences in patients’ diet.

While these problems are common to all the reference-based algorithms, the use of a set of OTUs instead

of a single taxonomy to describe a pathological condition could reduce the error due to an incomplete

annotation of the micriobiome. Additionally, a possible limitation of the LDA approach used here to test

STELLA algorithm is the arbitrary choice of a correlation threshold. However, we tested that different

thresholds and representative correlates do not affect the results presented here. Moreover, this limitation

does not affect the performance of the STELLA algorithm and is needed only to reduce computational

effort. Despite these limitations, our algorithm provides an estimate of the contribution of the different

OTUs to the metabolic profile that is in partial agreement with experimental data.
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STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contact, Caterina A. M. La Porta (caterina.laporta@unimi.it).

Data and code availability

d We considered three datasets of microbiome data related to ASD10–12 and two related to MS.9,13 Details

on the considered databases are reported in key resources table. We report the list of OTUs and metab-

olites selected by LDA in Data S1.

d All original code has been deposited in Zenodo and https://github.com/ComplexityBiosystems/STELLA

and is publicly available as of the date of publication. DOIs are listed in the key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.

METHOD DETAILS

The STELLA algorithm

Information on the metabolic pathways present in a given taxonomy were obtained from the metabolic

pathways database for microbial taxonomic groups (Macadam).14 The Metacyc database15 was used to

retrieve, for all the reactions involved in a given pathway, the metabolites synthetized and consumed as

well as their stoichiometry and direction of the reactions. When OTU perfect match was missing in the

MACADAM database, we retrieved data from the next-higher taxonomic order, up to family level. In order

to avoid to include unrelated pathways, if an OTU corresponding to a family is missing from theMACADAM

database, we neglect it. In the case of a species, when the corresponding genus is available in OTUs abun-

dance matrix, we sum up all the relative abundances.

Given a dataset containingOTUs abundances in a set of hosts (patient and control subjects), it is possible to

build a patient-pathway matrix P containing a host-specific score associated with each pathway j in Mac-

adam. The matrix is defined by

Phj =
X

k

ahkbkj (Equation 1)

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

V2-V3 regions of 16S rRNA genes for

autism (23 patients, 21 healthy subjects)

Supplementary material https://doi.org/10.1016/j.anaerobe.2017.12.007

V2-V3 regions of 16S rRNA genes for

autism (20 patients, 19 healthy subjects)

Supplementary material https://doi.org/10.3390/nu11092128

V2-V3 regions of 16S rRNA genes for

autism (35 patients, 6 healthy subjects)

Supplementary material https://doi.org/10.1038/s41598-018-32219-2

V4 regions of 16S rRNA genes for

multiple sclerosis (24 patients, 25 healthy subjects)

Dryad repository

https://doi.org/10.7272/Q6FB5136

https://doi.org/10.1128/mSystems.00083-18

V4 regions of 16S rRNA genes for

multiple sclerosis (71 patients, 71 healthy subjects)

Dryad repository

https://doi.org/10.7272/Q6WQ01ZB

https://doi.org/10.1073/pnas.1711235114

Software and algorithms

STELLA algorithm Zenodo https://doi.org/10.5281/zenodo.7436739

Function stepclass from the R package klar (v.4.0) R software https://www.R-project.org/
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where ahk is the relative abundance of the taxonomy k in the host h and bkj is 1 if the pathway j is present in

the taxonomy k according to Macadam database and 0 if it is absent. Moreover, using the information on

metabolites contained in MetaCyc, each metabolite i present in the pathway j was associated with a score

given by:

Sji =
X

r ˛ j

djr sri (Equation 2)

where r are the reactions in the pathway, s is the stoichiometric number of the metabolite i in the reaction r,

positive if themetabolite is produced and negative if it is consumed an the coefficient djr can assume values

G1 in order to account for the direction of the reaction. Reversible reactions are considered as left to right

and associated with djr = 1.

MetaCyc associates an ontology description to each pathway. While the full name is used to produce pa-

tient-metabolite matrix, we considered a lower-level classification of the pathways for metabolic network

reconstruction. This allows us to collapse pathways producing the same selected compound in macro-cate-

gory. In particular, we selected the sixth ontology-level term associated with a pathway. When less than six

levels are reported in MetaCyc, we considered the deepest level.

Thus, combining the matrices P and S we define a host-metabolite matrix Mhi defined as

Mhi =
X

j

PhjSji (Equation 3)

and whose elements represent an estimate of the production or consumption of themetabolite i in the host

h due to all the OTUs associated with the host. The matrix Mhi is the core of the STELLA algorithm since it

allows us to infer the metabolic spectrum associated with a host with a given microbiome profile.

Data processing

All of the datasets are based on 16s rRNA sequencing of fecal samples from patients and healthy controls.

The Quantitative Insights Into Microbial Ecology (QIIME) software package26 was used for sequencing

analysis. Greengenes 16S rRNA reference sequences (V. 13.5 - clustered at 99 percent identity27) were

used as reference database to annotate the taxonomies as Operational taxonomic units (OTUs) identifying

different taxonomies by cluster of similar sequences, variants of the 16S rDNAmarker gene sequence.26We

consider, for each dataset, thematrix of abundances of OTUs, truncated to genus level, when not otherwise

specified. Two of the datasets that comprise Autistic patients10,11 were obtained with a similar sequencing

pipeline, and relative abundance of OTUs result comparable allowing us to analyze them separately and in

combination. We applied the SVD-correction technique introduced in19 to remove batch effect from the

merged dataset as described below. The third dataset12 is not directly comparable to the others due to

a different experimental pipeline used by the authors to normalize the data and the number of patients

and healthy controls considered is largely unpaired (see key resources table).

The two datasets related to Multiple Sclerosis9,13 report microbial abundances as non-normalized integer

counts. In particular, the first dataset focuses only on a subset of spore-forming chloroform resistant bac-

teria and includes a small subset of OTUs (68) when compared to the second one (942). Sample size is also

highly different and the two datasets are thus incomparable. The taxonomies reported in the datasets were

hand-checked, redundancy in OTUs names were manually removed.

Batch effect removal

When more than one dataset of microbiome sequencing data are available for the same disease, data can

be combined in order to increase the statistics over the patients. This step can, however, introduce a num-

ber of biases in the analysis. First of all, the pipeline used to analyze the raw data should be similar so that

datasets could be compared. Even in this case, the conjoined analysis of datasets obtained from different

experiments and laboratories could lead to differences between the groups due to experimental proced-

ures or sampling (batch effect) which do not depend on the biological process under investigation. The

SVD-correction technique discussed in19 can be applied to remove batch effects from theOTUs abundance

matrix obtained by merging two or more datasets.
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Briefly, SVD-corrections are used to filter out those eigenvectors of the global OTUsmatrix that are inferred

to correspond to batch effects rather than to true biological differences between the samples. The process

is repeated until the largest contribution to the variance is given by the variance between the two classes of

interest ’’disease’’ and ’’control’’. Here, we applied the correction on the datasets reported by10 and.11 We

merged the two datasets, keeping only those OTUs present in both the original dataset. In our case, it was

enough to remove only the first eigenvalue in order to remove batch effect, as discussed below.

Principal component analysis

We performed a PCA on the log-transformed OTUs abundances matrix from the intersection of two data-

sets.10,11 The matrix includes all the 83 patients and the 103 taxonomies present in both datasets.

Observing the projection on the first two principal components, it is evident that the first one allows us

to distinguish between the two datasets (see Figure 3), while the second one seems to be slightly related

to control/patient distinction. Applying one-step batch effect removal algorithm, we were able to reduce

the distinction between the two datasets and first principal component as well as hierarichcal clustering

shows a reduction of batch effect.

Step-wise feature selection

The linear discriminant analysis (LDA) feature selection was used to find the OTUs and the metabolites that

are more relevant to distinguish ’’disease’’ and ’’control’’ condition. LDA is a supervised learning technique

for classification based on maximization of the Rayleigh coefficient, given by the ratio of the determinant of

the inter-class scatter matrix of the projected samples to the intra-class scatter matrix of the projected

samples.

The feature selection algorithm used in the present study is based on the function stepclass from the pack-

age klaR in R (v.4.0,28). The algorithm trains a model using the method stepLDA and finds the best model by

maximizing the accuracy of the performance using a 10-fold cross validation. At each round, the data are

divided into a different training and test set, where the training set is used to determine the coefficients and

the test is used to assess the performance of the trainedmodel with the optimized coefficients. We allowed

forward and backward selection by setting the maximum number of features to 15 both for OTUs and

metabolites. We verified that, with the considered database, this is sufficient to reach a plateau in perfor-

mance of the algorithm. The process is repeated for at least 100 replica with random reshuffling of the

columns in order to avoid any dependencies of the algorithm’s results to the order of the variables and

to detect any errors or inconsistencies. Both the OTUs abundances matrix and metabolite matrix need

to be pre-processed removing highly correlated variables and OTUs with null or constant abundance

across the hosts, in order to diminish the computational effort. Correlation threshold was set to 0.95 for

OTUs abundances and 0.7 for metabolites. Feature selection has been performed on log-transformed

OTUs abundances. Coherence of the results using different representative for correlation cluster was

verified.

QUANTIFICATION AND STATISTICAL ANALYSIS

To compare metabolites resulting of the STELLA algorithm with those measured experimentally, we

compute the associated z-scores. IfMhi is the relative concentration of themetabolite i in host h, the z-score

is obtained as

zhi =
Mhi � CMhiD

s
; (Equation 4)

where CMDh =
P
h

Mhi=Nh, Nh is the number of hosts and s is the corresponding standard deviation.

Fb-scores are computed by considering the sign of z-scores for predicted and measured metabolites as

Fb =

�
1+ b2

�
nTP�

1+ b2
�
nTP + b2nFN + nFP

; (Equation 5)

where nTP is the number of true positives, nFP is the number of false positives and nFN is the number of false

negatives.
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